National Instruments Network Card NI 9144 User Manual

USER GUIDE AND SPECIFICATIONS  
Safety Voltages................................................................................ 14  
Hazardous Locations........................................................................ 15  
Environmental.................................................................................. 15  
Shock and Vibration ........................................................................ 16  
Cabling............................................................................................. 16  
Safety Standards .............................................................................. 17  
 
1
NI 9144  
POWER  
FPGA  
RUN  
ERR  
Ether  
2
4
INPUT  
9-30V  
20W MAX  
3
1
2
LEDs  
IN Port  
3
4
OUT Port  
Power Connector  
Figure 1. NI 9144 Chassis  
Safety Guidelines  
Operate the NI 9144 chassis only as described in this user guide.  
Safety Guidelines for Hazardous Locations  
The NI 9144 chassis is suitable for use in Class I, Division 2, Groups A, B,  
C, D, T4 hazardous locations; Class 1, Zone 2, AEx nA IIC T4 and Ex nA  
IIC T4 hazardous locations; and nonhazardous locations only. Follow these  
guidelines if you are installing the NI 9144 chassis in a potentially  
explosive environment. Not following these guidelines may result in  
serious injury or death.  
Caution Do not disconnect the power supply wires and connectors from the chassis unless  
power has been switched off.  
© National Instruments Corporation  
3
NI 9144 User Guide and Specifications  
 
     
Caution Substitution of components may impair suitability for Class I, Division 2.  
Caution For Zone 2 applications, install the system in an enclosure rated to at least IP 54  
as defined by IEC 60529 and EN 60529.  
Special Conditions for Hazardous Locations Use  
in Europe  
This equipment has been evaluated as Ex nA IIC T4 equipment under  
DEMKO Certificate No. 07 ATEX 0626664X. Each chassis is marked  
II 3G and is suitable for use in Zone 2 hazardous locations, in ambient  
temperatures of –40 Ta 70 °C.  
Special Conditions for Marine Applications  
Some chassis are Lloyd’s Register (LR) Type Approved for marine  
applications. To verify Lloyd’s Register certification, visit ni.com/  
certificationand search for the LR certificate, or look for the Lloyd’s  
Register mark on the chassis.  
Mounting the NI 9144 Chassis  
You can mount the chassis in any orientation on a 35 mm DIN rail or on a  
panel. Use the DIN rail mounting method if you already have a DIN rail  
configuration or if you need to be able to quickly remove the chassis. Use  
the panel mount method for high shock and vibration applications.  
Caution Your installation must meet the following requirements for space and cabling  
clearance:  
Allow 25.4 mm (1 in.) on the top and the bottom of the chassis for air circulation.  
Allow 50.8 mm (2 in.) in front of C Series I/O modules for cabling clearance for  
common connectors, such as the 10-terminal, detachable screw terminal connector, as  
shown in Figure 2.  
NI 9144 User Guide and Specifications  
4
ni.com  
 
     
48.4 mm  
(1.9 in.)  
Cabling Clearance  
50.8 mm (2.00 in.)  
29.0 mm  
(1.14 in.)  
58.9 mm  
(2.32 in.)  
286.4 mm  
(11.28 in.)  
3.2 mm  
(0.13 in.)  
Figure 2. NI 9144 Chassis, Bottom View with Dimensions  
19.0 mm  
(0.75 in.)  
165.1 mm  
(6.5 in.)  
NI 9144  
POWER  
FPGA  
RUN  
36.4 mm  
(1.43 in.)  
ERR  
Ether  
87.3 mm  
(3.44 in.)  
51.7 mm  
(2.04 in.)  
INPUT  
9-30 V  
20 W MAX  
2.9 mm  
(0.12 in.)  
Figure 3. NI 9144 Chassis, Front View with Dimensions  
© National Instruments Corporation  
5
NI 9144 User Guide and Specifications  
 
 
44.069 mm  
(1.74 in.)  
25.078 mm  
(0.99 in.)  
20.320 mm  
(0.8 in.)  
44.125 mm  
(1.74 in.)  
63.178 mm  
(2.49 in.)  
Figure 4. NI 9144 Chassis, Side View with Dimensions  
The following sections contain mounting method instructions. Before  
using any of these mounting methods, record the serial number from the  
back of the chassis. After the chassis is mounted, you will not be able to  
read the serial number.  
Caution Remove any C Series I/O modules from the chassis before mounting it.  
Mounting the NI 9144 Chassis on a Panel  
Use the NI 9905 panel mount kit to mount the NI 9144 chassis on a flat  
surface. To use the NI 9905 panel mount kit, complete the following steps:  
1. Fasten the chassis to the panel mount kit using a number 2 Phillips  
screwdriver and two M4 × 16 screws. National Instruments provides  
these screws with the panel mount kit. You must use these screws  
because they are the correct depth and thread for the panel.  
NI 9144 User Guide and Specifications  
6
ni.com  
 
 
NI 9144  
Ether  
INPUT  
9-30VMAX  
20W  
Figure 5. Installing the Panel Mount Accessory on the NI 9144 Chassis  
330.200 mm  
(13 in.)  
311.150 mm  
(12.25 in.)  
9.525 mm  
286.634 mm  
(11.28 in.)  
(0.38 in.)  
15.491 mm  
(0.61 in.)  
NI 9144  
POWER  
FPGA  
RUN  
ERR  
Ether  
88.138 mm  
(3.47 in.)  
INPUT  
9-30 V  
20 W MAX  
31.750 mm  
(1.25 in.)  
63.500 mm  
(2.5 in.)  
Figure 6. Dimensions of NI 9144 Chassis with Panel Mount Accessory Installed  
2. Fasten the NI 9905 panel to the wall using the screwdriver and screws  
that are appropriate for the wall surface.  
Caution Remove any C Series I/O modules from the chassis before removing it from the  
panel.  
© National Instruments Corporation  
7
NI 9144 User Guide and Specifications  
 
Mounting the Chassis on a DIN Rail  
Use the NI 9915 DIN rail mount kit if you want to mount the chassis on a  
DIN rail. You need one clip for mounting the chassis on a standard 35 mm  
DIN rail. Complete the following steps to mount the chassis on a DIN rail:  
1. Fasten the DIN rail clip to the chassis using a number 2 Phillips  
screwdriver and two M4 × 16 screws. National Instruments provides  
these screws with the DIN rail mount kit.  
Figure 7. Installing the DIN Rail Clip on the NI 9144 Chassis  
2. Insert one edge of the DIN rail into the deeper opening of the DIN rail  
clip, as shown in Figure 8.  
1
2
3
1
DIN Rail Clip  
2
DIN Rail Spring  
3
DIN Rail  
Figure 8. One Edge of the DIN Rail Inserted in a Clip  
NI 9144 User Guide and Specifications  
8
ni.com  
 
   
3. Press down firmly on the chassis to compress the spring until the clip  
locks in place on the DIN rail.  
Caution Remove any C Series I/O modules from the chassis before removing the chassis  
from the DIN rail.  
Connecting the NI 9144 Chassis to a Network  
NI recommends that you install a private network segment for your  
deterministic Ethernet expansion devices. Slave devices cause network  
flooding on a standard network. Non-EtherCAT frames jeopardize the  
system performance and determinism on an EtherCAT network. Refer to  
the EtherCAT Technology Group Web site at www.ethercat.org, for  
more information.  
The following devices are required to connect the NI 9144 chassis to a  
network successfully: a host computer, a supported LabVIEW Real-Time  
target1 with the NI-Industrial Communications for EtherCAT software  
driver installed on it, and an NI 9144 slave device.  
To have your LabVIEW target establish a connection with the NI 9144  
chassis, connect the secondary port of the LabVIEW Real-Time target to  
the NI 9144 IN port. Use a standard Category 5 (CAT-5) or better Ethernet  
cable. Use the NI 9144 OUT port to connect to other NI 9144 chassis and  
slave devices on the same segment.  
Once the connection is established, install the NI-Industrial  
Communications for EtherCAT software on the host computer and then use  
Measurement and Automation Explorer (MAX) to install the NI-Industrial  
Communications for EtherCAT driver on the target.  
Caution To update your firmware on the NI 9144 chassis, refer to the Updating your  
Firmware section of this user guide.  
Caution To prevent data loss and to maintain the integrity of your EtherCAT installation,  
do not use a CAT-5 Ethernet cable longer than 100 m. National Instruments recommends  
using a CAT-5 or better shielded twisted-pair Ethernet cable. If you need to build your own  
cable, refer to the Cabling section for more information about Ethernet cable wiring  
connections.  
Note If you are not using a LabVIEW Real-Time target as the master controller, consult  
your product documentation about networking connections.  
1
Supported LabVIEW targets include the NI cRIO-9074 and PXI RT with the NI PXI-8231 Ethernet interface.  
© National Instruments Corporation  
9
NI 9144 User Guide and Specifications  
 
 
Understanding LED Indications  
Figure 9 shows the NI 9144 chassis LEDs.  
POWER  
FPGA  
RUN  
ERR  
Figure 9. NI 9144 Chassis LEDs  
POWER LED  
The POWER LED is lit while the NI 9144 chassis is powered on. This LED  
indicates that the power supply connected to the chassis is adequate.  
FPGA LED—Open FPGA Mode Only  
This LED is for Open FPGA mode only. This mode is currently not  
activated.  
RUN and ERR LEDs  
The RUN LED is green and indicates that the NI 9144 is in an operational  
state. The ERR (error) LED is red and indicates error codes. Table 1 lists  
the RUN and ERR LED indications.  
Table 1. RUN and ERR LED Indications  
RUN LED  
Description  
ERR LED  
LED  
Behavior  
Run Mode  
Error Mode  
Description  
Off  
INIT (Initialize)  
Slave discovery and  
Initialization  
No Error  
Blinking  
PRE-OP  
Module detection,  
Invalid  
Unsupported  
(Pre-Operational) configuration, and  
synchronization  
Configuration  
Module, Bad  
Device Profile,  
Object Dictionary,  
and configuration  
Single-Flash  
SAFE-OP  
(Safe  
Operational)  
Inputs are  
Unsolicited  
State Change  
Backplane or  
Module  
emergency  
condition  
functional, outputs  
drive constant safe  
values  
NI 9144 User Guide and Specifications  
10  
ni.com  
 
         
Table 1. RUN and ERR LED Indications (Continued)  
RUN LED  
ERR LED  
LED  
Behavior  
Run Mode  
Description  
Error Mode  
Description  
Double-Flash  
Application  
Watchdog  
Timeout  
Slave did not  
receive a  
scheduled  
EtherCAT  
telegram  
On  
Operational  
Inputs and Outputs  
are functional  
PDI (Process  
DataInterface) transfer I/O data in  
Slave failed to  
Watchdog  
Timeout  
scheduled time  
Flickering  
Bootstrap  
Firmware Update  
Booting Error  
Corrupt firmware  
or hardware error  
Figure 10 shows the Run Mode transition.  
INIT  
PRE-OP  
Bootstrap  
SAFE-OP  
Operational  
Figure 10. EtherCAT Modes  
© National Instruments Corporation  
11  
NI 9144 User Guide and Specifications  
 
 
Resetting the NI 9144 Network Configuration  
To reset the NI 9144 network configuration, unplug and replug in the  
NI 9144 chassis.  
Safe-State Outputs  
The NI 9144 has a safe state that lies between its configuration and  
operational states. When moving out of the operational state down to the  
configuration state, during normal operation or in case of a serious error,  
the NI 9144 passes through this safe state.  
The safe state forces the data of output modules to pre-defined safe values,  
which are set by default to output zero volts for the default channel  
configuration. It is possible to change the safe values as needed by writing  
to the appropriate object dictionary entries for your output module.  
Slave Timing Modes  
There are two fundamental timing modes the NI 9144 can operate in:  
free-run and synchronized using the EtherCAT distributed clock through  
DC synchronized mode.  
In free-run mode the NI 9144, by default, runs its conversion cycle as  
quickly as the slowest module allows. It is possible to slow the free-run  
conversion cycle down by writing a minimum cycle time in nanoseconds to  
the NI 9144’s index 0x3001.1.  
In DC synchronized mode the NI 9144 begins each conversion cycle on a  
signal from the EtherCAT Master/scan engine. If the external cycle time is  
too fast for the given module configuration, the NI 9144 signals an error.  
Updating your Firmware  
Firmware updates are performed via the File over EtherCAT (FoE)  
download protocol. All NI firmware update files have a suffix of.foe and  
have internal identification information that guides the NI 9144 during the  
update. Refer to your specific master software documentation for the  
procedure of sending FoE downloads.  
The NI 9144 firmware update does not use the filename or password  
information.  
NI 9144 User Guide and Specifications  
12  
ni.com  
 
       
Using the NI 9144 with an EtherCAT Third-Party Master  
All of the functionality of the NI C Series modules is available to  
third-party masters using vendor extensions to the object dictionary. The  
NI 9144 is a modular device, meaning each module plugged into the  
backplane has its own object dictionary, and each module configuration  
is done through this dictionary. If your master software supports AoE  
services (ADS over EtherCAT), you can address the module directly. If  
your master software does not support AoE services, you can still configure  
your module using NI vendor extensions and CoE (CAN over EtherCAT).  
Using AoE/SDO  
The AoE protocol allows you to specify the destination port or address of  
the SDO request. An address of 0 indicates the NI 9144 device, while  
addresses 1 through 8 route the SDO request to the object dictionary of the  
module in the addressed slot. If no module is inserted in the addressed slot,  
the request fails. SDOInfo and SDO requests work with module object  
dictionaries over AoE in a manner similar to the NI 9144 main object  
dictionary.  
Depending on the master software interface, you may be required to add  
1,000 to the slot number to create a valid AoE address.  
For more information, refer to your C Series Module documentation.  
Using CoE/SDO  
The CoE protocol does not have a destination port or address, so the  
NI 9144 provides an object dictionary entry that allows addressing support.  
Prior to sending an SDO or SDOInfo request, your application can write a  
slot number of 1 through 8 to the object dictionary index 0x5FFF subindex  
0. Once this address is written, all future SDO transactions are sent to the  
object dictionary of the module in the addressed slot. If no module is  
inserted in the addressed slot, the request fails.  
After the module-specific SDOInfo and SDO requests are complete, the  
application writes 0 to the module’s object dictionary index 0x5FFF  
subindex 0 to return control to the NI 9144 main object dictionary.  
For a list of all chassis and module object dictionary entries, refer to  
Appendix A.  
© National Instruments Corporation  
13  
NI 9144 User Guide and Specifications  
 
     
Specifications  
The following specifications are typical for the –40 to 70°C operating  
temperature range unless otherwise noted. For more information, refer to  
the specific module specifications.  
Network  
Network interface ...................................100BaseTX Ethernet  
Compatibility..........................................EtherCAT  
Communication rates..............................100 Mbps  
Maximum cabling distance.....................100 m/segment  
Power Requirements  
Caution You must use a National Electric Code (NEC) UL Listed Class 2 power supply  
with the NI 9144 chassis.  
Recommended power supply..................48 W, 24 VDC  
Power consumption ................................20 W maximum  
Chassis input range.................................9 to 30 V  
Physical Characteristics  
If you need to clean the controller, wipe it with a dry towel.  
Screw-terminal wiring ............................0.5 to 2.5 mm2 (24 to 12 AWG)  
copper conductor wire with  
10 mm (0.39 in.) of insulation  
stripped from the end  
Torque for screw terminals.....................0.5 to 0.6 N · m  
(4.4 to 5.3 lb · in.)  
Weight ....................................................906 g (32.7 oz)  
Safety Voltages  
Connect only voltages that are within these limits.  
V terminal to C terminal.........................30 V max, Measurement  
Category I  
NI 9144 User Guide and Specifications  
14  
ni.com  
 
         
Measurement Category I is for measurements performed on circuits not  
directly connected to the electrical distribution system referred to as  
MAINS voltage. MAINS is a hazardous live electrical supply system that  
powers equipment. This category is for measurements of voltages from  
specially protected secondary circuits. Such voltage measurements include  
signal levels, special equipment, limited-energy parts of equipment,  
circuits powered by regulated low-voltage sources, and electronics.  
Caution Do not connect the system to signals or use for measurements within  
Measurement Categories II, III, or IV.  
Hazardous Locations  
U.S. (UL)................................................ Class I, Division 2, Groups A,  
B, C, D, T4; Class I, Zone 2,  
AEx nA IIC T4  
Canada (C-UL)....................................... Class I, Division 2, Groups A,  
B, C, D, T4; Class I, Zone 2,  
Ex nA IIC T4  
Europe (DEMKO).................................. Ex nA IIC T4  
Environmental  
The NI 9144 chassis is intended for indoor use only, but it may be used  
outdoors if mounted in a suitably rated enclosure.  
Operating temperature  
(IEC 60068-2-1, IEC 60068-2-2)........... –40 to 70 °C  
Note To meet this operating temperature range, follow the guidelines in the installation  
instructions for your EtherCAT system.  
Storage temperature  
(IEC 60068-2-1, IEC 60068-2-2)........... –40 to 85 °C  
Ingress protection................................... IP 40  
Operating humidity  
(IEC 60068-2-56)................................... 10 to 90% RH, noncondensing  
Storage humidity  
(IEC 60068-2-56)................................... 5 to 95% RH, noncondensing  
Maximum altitude.................................. 2,000 m  
Pollution Degree (IEC 60664) ............... 2  
© National Instruments Corporation  
15  
NI 9144 User Guide and Specifications  
 
   
Shock and Vibration  
To meet these specifications, you must panel mount the EtherCAT system  
and affix ferrules to the ends of the power terminal wires.  
Operating shock (IEC 60068-2-27) ........30 g, 11 ms half sine,  
50 g, 3 ms half sine,  
18 shocks at 6 orientations  
Operating vibration,  
random (IEC 60068-2-64) ......................5 grms, 10 to 500 Hz  
Operating vibration,  
sinusoidal (IEC 60068-2-6) ....................5 g, 10 to 500 Hz  
Cabling  
Table 2 shows the standard Ethernet cable wiring connections.  
Table 2. Ethernet Cable Wiring Connections  
Pin  
1
Connector 1  
white/orange  
Connector 2  
white/orange  
2
orange  
orange  
3
white/green  
blue  
white/green  
blue  
4
5
white/blue  
green  
white/blue  
green  
6
7
white/brown  
brown  
white/brown  
brown  
8
NI 9144 User Guide and Specifications  
16  
ni.com  
 
     
Connector 1  
Connector 2  
Pin 1  
Pin 8  
Pin 1  
Pin 8  
Figure 11. Ethernet Connector Pinout  
Safety Standards  
This product meets the requirements of the following standards of safety  
for electrical equipment for measurement, control, and laboratory use:  
IEC 61010-1, EN 61010-1  
UL 61010-1, CSA 61010-1  
Note For UL and other safety certifications, refer to the product label or the Online  
Product Certification section.  
Electromagnetic Compatibility  
This product meets the requirements of the following EMC standards for  
electrical equipment for measurement, control, and laboratory use:  
EN 61326 (IEC 61326): Class A emissions; Basic immunity  
EN 55011 (CISPR 11): Group 1, Class A emissions  
AS/NZS CISPR 11: Group 1, Class A emissions  
FCC 47 CFR Part 15B: Class A emissions  
ICES-001: Class A emissions  
Note For the standards applied to assess the EMC performance of this product, refer to the  
Online Product Certification section.  
© National Instruments Corporation  
17  
NI 9144 User Guide and Specifications  
 
   
Note For EMC compliance, operate this device with shielded cables.  
CE Compliance  
This product meets the essential requirements of applicable European  
Directives as follows:  
2006/95/EC; Low-Voltage Directive (safety)  
2004/108/EC; Electromagnetic Compatibility Directive (EMC)  
Online Product Certification  
Note Refer to the product Declaration of Conformity (DoC) for additional regulatory  
compliance information. To obtain product certifications and the DoC for this product,  
visit ni.com/certification, search by model number or product line, and click the  
appropriate link in the Certification column.  
Environmental Management  
National Instruments is committed to designing and manufacturing  
products in an environmentally responsible manner. NI recognizes that  
eliminating certain hazardous substances from our products is beneficial  
not only to the environment but also to NI customers.  
For additional environmental information, refer to the NI and the  
Environment Web page at ni.com/environment. This page contains the  
environmental regulations and directives with which NI complies, as well  
as other environmental information not included in this document.  
Waste Electrical and Electronic Equipment (WEEE)  
EU Customers At the end of their life cycle, all products must be sent to a WEEE recycling  
center. For more information about WEEE recycling centers and National Instruments  
WEEE initiatives, visit ni.com/environment/weee.htm.  
⬉ᄤֵᙃѻક∵ᶧ᥻
ㅵ⧚
⊩ ˄Ё೑  
˅
RoHS  
Ё೑ᅶ᠋  
݇Ѣ  
ヺড়Ё೑⬉ᄤֵᙃѻકЁ䰤
Փ⫼ᶤѯ᳝ᆇ⠽䋼ᣛҸ  
DŽ
National Instruments  
National Instruments  
(RoHS)  
Ё೑  
ড়㾘ᗻֵᙃˈ䇋ⱏᔩ ni.com/environment/rohs_chinaDŽ  
RoHS  
ni.com/environment/rohs_china  
(For information about China RoHS compliance, go to  
.)  
NI 9144 User Guide and Specifications  
18  
ni.com  
 
     
Appendix A  
Vendor Extensions to the Object Dictionary  
Most object dictionary entries are defined by the relevant EtherCAT and  
CANOpen specification for modular slave devices. Both the NI 9144  
device and the C Series modules have vendor extensions to the standard.  
These extensions are described here.  
Note Most object dictionary entries are set to usable defaults during the NI 9144’s  
transition from INIT to PREOP. NI recommends writing down the object dictionary default  
values, in case you need to revert to them, before you begin to overwrite them with new  
values prior to the transition to SAFEOP.  
Note The following lists the most common C Series module vendor extensions. Each  
module has its own extensions which may vary from the information listed here, and any  
given object dictionary index may have a different meaning depending on which module is  
inserted. For more information, refer to your C Series module documentation.  
Table 3 lists common module vendor extensions.  
Table 3. Module Vendor Extensions  
Index  
Sub  
Type  
R/W  
Description  
NI 9144 Vendor Extension  
0x3001  
0
1
ARR:U32  
Timing Overrides: provides additional control over the  
timing of the NI 9144  
R/W Minimum free-run cycle time in nanoseconds. Set to 0  
to operate at the minimum cycle. Set to 1,000,000 for  
a 1 mS cycle (1 kHz).  
2
0
R/W Disables multiple scans. Setting the field to 1 disables  
multiple-scan ability. Even when a module has enough  
time during the cycle to acquire more than one set of  
data, only one acquisition occurs. This is useful when  
analyzing the module acquisition timing.  
0x5FFF  
U32  
R/W Slot address override. To address CoE requests to a  
given module’s object dictionary, write the module’s  
slot number here. Write a 0 here to cancel the slot  
address override.  
© National Instruments Corporation  
19  
NI 9144 User Guide and Specifications  
 
     
Table 3. Module Vendor Extensions (Continued)  
Type R/W Description  
C Series Module Vendor Extensions  
Index  
Sub  
0x2000  
0
U32  
R
NI C Series Vendor ID (for NI C Series modules,  
equals 0x1093)  
0x2001  
0..N  
ARR:  
R/W • Scan or command list  
• Channel direction control  
• Mode selection  
0x2002  
0
U32  
R/W • Error status  
• Unipolar/bipolar control  
• Module configuration command  
• Module conversion rate control  
R/W Error acknowledgement (or status)  
R/W • Refresh period  
0x2003  
0x2005  
0
0
U32  
U8  
• Conversion format  
0x2100  
0x3002  
0..N  
0
ARR:  
U32  
R
R
Calibration data  
Number of scans. This index reports the number of  
conversions the module makes during the cycle. If  
disable multiple scans is set in the NI 9144, the number  
of scans is always 1.  
0x4000  
R/W Safe data values that mirror the PDO data in  
0x6000…0x67FF  
0x47FF  
0x4800  
R/W Safe control values that mirror the SDO data in  
0x2000…0x27FF.  
0x4FFF  
Supported C Series Modules  
C Series Modules with No Configurable Options  
The following lists the modules with no configurable options:  
NI 9411  
NI 9421  
NI 9144 User Guide and Specifications  
20  
ni.com  
 
   
NI 9422  
NI 9423  
NI 9425  
NI 9426  
NI 9435  
NI 9472  
NI 9474  
NI 9475  
NI 9477  
NI 9481  
NI 9485  
NI 9201/9221  
Table 4. NI 9201/9221 Vendor Configuration Extensions  
Index  
Sub  
0
Type  
R/W  
Description  
0x2001  
ARR:U32  
Scan List = 9  
Channels to Convert = 1..8, default = 8  
1
R
2..9  
0
R/W Channel Code  
0x2002  
0x2100  
U32  
R/W Fast Convert = 0/1, default = 1 (fast)  
0
ARR:U32  
R
Calibration = 32  
Ch0 Offset  
1
2
R
Ch0 Gain  
15  
16  
17  
R
Ch7 Offset  
Ch7 Gain  
R
R
External Calibration, Ch0 Offset  
© National Instruments Corporation  
21  
NI 9144 User Guide and Specifications  
 
 
NI 9201/9221 Scan List  
The scan list channel codes consist of two bit fields in a 32-bit entry.  
Table 5. NI 9201/9221 Scan List Format  
Bits  
31:24  
23:16  
15:8  
7:0  
Field  
= 0  
Data Offset[t]  
= 0  
Convert Flag[t+2]  
Bits 23..16 describe the data offset to store a conversion at time t, and  
bits 7..0 describe the conversion control code that takes effect  
two conversions in the future, at time t+2. On the NI 9201/9221, this  
conversion code is a bit flag where bit 0 represents a conversion on channel  
0, through bit 7 for channel 7.  
So, for example, the scan list entry 0x00010008 indicates this scan stores  
at address 1, and the conversion two in the future is channel 3 (bit 3 set = 8).  
Table 6 contains the default scan list.  
Table 6. NI 9201/9221 Default Scan List  
Index  
Sub  
0
Type  
Value  
0x2001  
ARR:U32  
9
8
1
2
0x00000004  
0x00010008  
0x00020010  
0x00030020  
0x00040040  
0x00050080  
0x00060001  
0x00070002  
3
4
5
6
7
8
9
NI 9144 User Guide and Specifications  
22  
ni.com  
 
 
NI 9201/9221 Calibration Data  
The NI 9201/9221 modules have eight channels with a nominal range of  
10.53 V and 62.5 V, respectively. Each channel has an associated LSB  
weight, which is the number of volts per bit, and an offset, which is the  
number of volts per bit measured when the inputs are grounded.  
Note LSB weight is referred to as Gain in the object dictionary.  
The calibration data is stored in a U32 array, though each Offset field  
(subindex 1, 3, 5, and so on) should be interpreted as a signed value.  
Table 7. NI 9221/9201 Calibration Coefficients  
Coefficient  
LSB Weight  
Offset  
Representation  
Unsigned  
Units  
nV/LSB  
nV  
Signed  
Use the calibration coefficients with the following equation to generate  
corrected data:  
nV  
bits  
V
nV  
V
nV  
9  
109  
Offset(nV) 10  
---------  
------  
------  
Vcorrected(Vraw) = Vraw(bits) LSB  
weight  
© National Instruments Corporation  
23  
NI 9144 User Guide and Specifications  
 
NI 9203  
Table 8. NI 9203 Vendor Configuration Extensions  
Index  
Sub  
0
Type  
R/W  
Value  
0x2001  
ARR:U32  
Scan List = 9  
1
R
Channels to  
Convert = 1..8,  
default = 8  
2..9  
0
R/W  
R/W  
Channel Code  
0x2002  
0x2100  
U32  
Unipolar Channel  
Mask  
0
1
ARR:U32  
R
Calibration = 36  
Bipolar Offset  
Ch0 Bipolar Gain  
Ch1 Gain  
2
R
3
R
...  
9
R
Ch7 Gain  
10  
11  
...  
19  
R
Unipolar Offset  
Ch0 Unipolar Gain  
R
R
R
External  
Calibration,  
Bipolar Gain  
...  
...  
...  
NI 9203 Scan List  
The scan list channel codes consist of three bit fields in a 32-bit entry.  
Table 9. NI 9203 Scan List Format  
Bits  
31:24  
23:16  
15:4  
Field  
= 0  
Data Offset[t]  
= 0  
NI 9144 User Guide and Specifications  
24  
ni.com  
 
 
Table 9. NI 9203 Scan List Format (Continued)  
Bits  
3
Field  
Bipolar = 0, Unipoloar = 1  
Channel Code[t+2]  
2:0  
Bits 23..16 describe the data offset to store a conversion at time t, and  
bits 3..0 describe the conversion control code that will take effect  
two conversions in the future, at time t+2. On the NI 9203, bit 3 determines  
whether the result is bipolar (signed) or unipolar (unsigned), and bits 2..0  
are the channel number reversed.  
Table 10. NI 9203 Channels/Reversed Bits  
Channel  
0 = 0b000  
1 = 0b001  
2 = 0b010  
3 = 0b011  
4 = 0b100  
5 = 0b101  
6 = 0b110  
7 = 0b111  
Reversed Bits  
0b000 = 0  
0b100 = 4  
0b010 = 2  
0b110 = 6  
0b001 = 1  
0b101 = 5  
0b011 = 3  
0b111 = 7  
So, for example, the scan list entry 0x00010006 indicates that this scan gets  
stored at address 1, and the conversion two is a bipolar channel 3  
(3 reversed = 6).  
© National Instruments Corporation  
25  
NI 9144 User Guide and Specifications  
 
Table 11 contains the default scan list.  
Table 11. NI 9203 Scan List Format  
Index  
Sub  
0
Type  
Value  
9
0x2001  
ARR:U32  
1
8
2
0x00000002  
0x00010006  
0x00020001  
0x00030005  
0x00040003  
0x00050007  
0x00060000  
0x00070004  
3
4
5
6
7
8
9
NI 9203 Calibration Data  
The NI 9203 has eight channels each with two modes. Each channel can  
have a nominal unipolar input range of 0–20 mA or bipolar 20 mA. Each  
channel has an associated LSB weight, which is the number of amps per bit,  
and an offset, which is the number of amps per bit measured when the  
inputs are open.  
Note LSB weight is referred to as Gain in the object dictionary.  
The difference in offset from channel to channel is negligible.  
The calibration data gives one offset and eight gains for each mode, a total  
of 2 offsets and 16 gains in total. All channels in a given mode use the same  
offset. The host can then take these constants and adjust the raw data into  
calibrated data.  
NI 9144 User Guide and Specifications  
26  
ni.com  
 
 
The calibration data is stored in a U32 array, though each offset field should  
be interpreted as a signed value.  
Table 12. NI 9203 Calibration Coefficients  
Coefficient  
LSB Weight  
Offset  
Representation  
Unsigned  
Units  
pA/LSB  
pA  
Signed  
Use the calibration coefficients with the following equation to generate  
corrected data:  
Icorrected(Iraw  
)
=
Iraw Iexpected 0mA  
LSBweight Ioffset  
pA/bit pA  
pA  
bits  
Table 13. NI 9203 Calibration Equation Information  
Term  
Icorrected  
Units  
pA  
Definition  
Calibrated current  
Iraw  
bits  
The raw code from the  
NI 9203  
Iexpected0mA  
bits  
Expected code at 0 mA.  
0 bits for 0–20 mA range.  
32768 bits for 20 mA  
range  
LSBweight  
Ioffset  
pA/bit  
pA  
Number of pA in one bit  
Offset at 0 mA  
© National Instruments Corporation  
27  
NI 9144 User Guide and Specifications  
 
NI 9205/9206  
Table 14. NI 9205/9206 Vendor Configuration Extensions  
Index  
Sub  
0
Type  
R/W  
Description  
0x2001  
ARR:U32  
Scan List = 33  
Channels to Convert = 1..32, default = 32  
1
R
2..33  
0
R/W Channel Code  
0x2100  
ARR:U32  
R
Calibration = 24  
Coeff 3  
1
2
R
Coeff 2  
3
R
Coeff 1  
4
R
Coeff 0  
5
R
10 V offset  
10 V gain  
5 V offset  
6
R
7
R
...  
13  
...  
R
User calibration, Coeff 3  
NI 9205/9206 Scan List  
The scan list channel codes consist of eight bit fields in a 32-bit entry.  
Table 15. Scan List Format  
Bits  
31:24  
23:16  
15:0  
Field  
= 0  
Data Offset[t]  
Conversion Code[t+2}  
Bits 23..16 describe the data offset to store a conversion at time t, and  
bits 15..0 describe a complex conversion control code that takes effect  
two conversions in the future, at time t+2. On the NI 9205/9206, this  
conversion code is listed in Table 16.  
NI 9144 User Guide and Specifications  
28  
ni.com  
 
 
Table 16. NI 9205/9206 Conversion Code  
Bits  
Field  
15:13  
12:11  
001 = Read AI  
Bank:  
01 = Channels 0..15  
10 = Channels 16..31  
10:8  
7:6  
Channel LSB = 0..7  
00 = Cal Pos Ref5V  
00 = NRSE  
5:4  
11 = Cal Neg AI Gnd RSE or DIFF  
Mode:  
3:2  
1:0  
10 = Single–End A  
(Ch. 0..7, 16..23)  
11 = Single–End B  
(Ch. 8..15, 24..31)  
00 = 10 V  
01 = 5 V  
10 = 1 V  
11 = 200 mV  
© National Instruments Corporation  
29  
NI 9144 User Guide and Specifications  
 
 
Table 17 contains the default scan list.  
Table 17. NI 9205/9206 Scan List Format  
Index  
Sub  
0
Type  
Value  
Sub  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
Value  
0x2001  
ARR:U32  
33  
1
32  
2
0x00002A38  
0x00012B38  
0x00022C38  
0x00032D38  
0x00042E38  
0x00052F38  
0x0006283C  
0x0007293C  
0x00082A3C  
0x00092B3C  
0x000A2C3C  
0x000B2D3C  
0x000C2E3C  
0x000D2F3C  
0x000E3038  
0x000F3138  
0x00103238  
0x00113338  
0x00123438  
0x00133538  
0x00143638  
0x00153738  
0x0016303C  
0x0017313C  
0x0018323C  
0x0019333C  
0x001A343C  
0x001B353C  
0x001C363C  
0x001D373C  
0x001E2838  
0x001F2938  
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
NI 9205/9206 Calibration Data  
The NI 9205 uses a quadratic formula for conversion from 16-bit raw data  
to calibrated data.  
The NI 9205 EEPROM provides overall polynominal values a3–a0 along  
with gain and offset values for each voltage range, to be applied when  
converting 16-bit raw data to calibrated data.  
1. Convert the 32-bit hex values to 64-bit floating point format for use in  
the calibration formula.  
2. Select the 32-bit gain value for a particular range.  
NI 9144 User Guide and Specifications  
30  
ni.com  
 
 
3. Select the 32-bit offset value (to be interpreted as a signed int) for a  
particular range.  
4. Use the above final coefficients and complete the following steps in the  
quadratic equation to convert raw 16-bit data into scaled volts:  
a. a0 = (f64(a0) * rangeGain) + rangeOffset  
b. a1 = f64(a1) * rangeGain  
c. a2 = f64(a2) * rangeGain  
d. a3 = f64(a3) * rangeGain  
5. Use the following formula with a3–a0 to obtain the scaled 16-bit value  
in Volts.  
x =signed un-scaled 16-bit data read from device:  
Scaled 16-bit signed data in Volts = a3*x3 + a2*x2 + a1*x + a0  
It is also possible to decode the raw data using only the offset and gain  
values. For more information, refer to the NI 9201/9221 section of this  
guide.  
NI 9211  
Table 18. NI 9211 Vendor Configuration Extensions  
Index  
Sub  
0
Type  
R/W  
Description  
0x2001  
ARR:U32  
Scan List = 7  
1
R
Channels to  
Convert = 1..6,  
default = 6  
2..7  
R/W  
Channel Number  
NI 9211 Scan List  
The scan list is a simple list of channels to convert, in order. The NI 9211  
has six channels total that can be measured:  
0..3: Four input channels (always measured in a 80 mV range)  
4: One cold junction channel (always measured in a 2.5 V range)  
5: One auto zero channel (always measured in a 80 mV range)  
© National Instruments Corporation  
31  
NI 9144 User Guide and Specifications  
 
 
Table 19 contains the default scan list.  
Table 19. NI 9211 Scan List Format  
Index  
Sub  
0
Type  
Value  
0x2001  
ARR:U32  
7
6
1
2
0
3
1
...  
7
...  
5
NI 9211 Calibration Data  
Calibration data is set up by the driver during initialization, and the  
calibration conversion is performed on the module ADC itself.  
NI 9213  
Table 20. NI 9213 Vendor Configuration Extensions  
Index  
Sub  
Type  
R/W  
Description  
0x2001  
0
1
ARR:U32  
Scan List = 19  
R
Channels to Convert = 1..18, default = 18  
Channel Code  
2..19  
1
R/W  
R/W  
R
0x2002  
0x2003  
ARR:U32  
U32  
Conversion Speed Control = 2 or 15, default = 2  
0
Common Mode Range Error Detection Status  
(also as 8-bit PDO)  
NI 9144 User Guide and Specifications  
32  
ni.com  
 
   
NI 9213 Conversion Speed Control  
The NI 9213 converts at two pre-defined rates, as controlled by the speed  
control field.  
Note The conversion rate assumes that 18 channels are in the scan list.  
Table 21. NI 9213 Conversion Speed Control  
Speed Control  
2 (0x02)  
Meaning  
High-Accuracy  
High-Speed  
Conversion  
55 ms/channel (.99 s total)  
740 μs/channel (13.32 ms total)  
15 (0x0F)  
NI 9213 Common Mode Error/Status  
The error/status field is shown in Table 22.  
Table 22. NI 9213 Error Status Field  
Field  
Bits  
31:8  
7
Reserved  
OT Error:  
1= Open thermocouple was detected on the  
last channel that was acquired  
6
5
CMV Error:  
1= Common mode voltage error was  
detected on the last channel that was  
acquired  
GO Status: status of the gain override enable  
bit  
4
Reserved  
3:0  
Currently configured ADC data rate  
NI 9213 Scan List  
The scan list contains channels to convert, in order. The NI 9213 has  
eighteen measurable channels:  
0..15: Sixteen thermocouple channels (always measured in a 78 mV  
range)  
16: One cold junction channel (always measured in a 2.5 V range)  
17: One auto zero channel (always measured in a 78 mV range)  
© National Instruments Corporation  
33  
NI 9144 User Guide and Specifications  
 
 
Table 23 contains the default scan list.  
Table 23. NI 9213 Scan List Format  
Index  
Sub  
0
Type  
Value  
19  
18  
0
0x2001  
ARR:U32  
1
2
3
1
...  
18  
19  
...  
16  
17  
NI 9213 Calibration Data  
Calibration data is set up by the driver during initialization; the calibration  
conversion is performed on the module ADC.  
NI 9215  
Table 24. NI 9215 Vendor Configuration Extensions  
Index  
0x2100  
Sub  
0
Type  
R/W  
R
Description  
Calibration = 16  
ARR:U32  
1
Ch0 Offset  
Ch0 Gain  
2
R
...  
7
...  
...  
R
Ch3 Offset  
Ch3 Gain  
8
R
9
R
External Calibration,  
Ch0 Offset  
...  
...  
...  
NI 9144 User Guide and Specifications  
34  
ni.com  
 
   
NI 9215 Calibration Data  
The NI 9215 has four channels with a nominal range of 10.4 V. Each  
channel has an associated LSB weight, which is the number of volts per bit,  
and an offset, which is the number of volts per bit measured when the inputs  
are grounded.  
Note LSB weight is referred to as Gain in the object dictionary.  
The NI 9215 EEPROM stores these two constants for each channel. The  
host can then take these constants and adjust the raw data into calibrated  
data.  
The calibration data is stored in a U32 array, though each Offset field  
(subindex 1, 3, 5, and so on) should be interpreted as a signed value.  
Table 25. NI 9215 Calibration Coefficients  
Coefficient  
LSB Weight  
Offset  
Representation  
Unsigned  
Units  
nV/LSB  
nV  
Signed  
Use the calibration coefficients with the following equation to generate  
corrected data:  
nV  
bits  
V
nV  
V
nV  
9  
109  
Offset(nV) 10  
---------  
------  
------  
Vcorrected(Vraw) = Vraw(bits) LSB  
weight  
NI 9217  
Table 26. NI 9217 Vendor Configuration Extensions  
Index  
Sub  
0
Type  
R/W  
Description  
0x2001  
ARR:U32  
Scan List = 5  
1
R
Channels to Convert = 1..4,  
default = 4  
2..5  
0
R/W  
R/W  
Channel Code  
0x2002  
U32  
Conversion Speed Control = 2 or 31,  
default = 31  
© National Instruments Corporation  
35  
NI 9144 User Guide and Specifications  
 
 
Table 26. NI 9217 Vendor Configuration Extensions (Continued)  
Index  
Sub  
0
Type  
R/W  
R
Description  
Calibration = 16  
0x2100  
ARR:U32  
1
Ch0 Offset  
Ch0 Gain  
Ch1 Offset  
2
R
3
R
...  
8
...  
...  
R
Ch3 Gain  
9
R
External Ch0 Offset  
...  
...  
...  
NI 9217 Conversion Speed Control  
The NI 9217 converts at two pre-defined rates, as controlled by the speed  
control field.  
Note The conversion rate assumes that 4 channels are in the scan list.  
Table 27. NI 9217 Conversion Speed Control  
Speed Control  
Meaning  
High-Accuracy  
Conversion Rate  
31 (0x1F)  
2 (0x02)  
200 ms/channel (800 ms total)  
2.5 ms/channel (10 ms total)  
High-Speed  
NI 9217 Scan List  
The scan list channel codes consist of three bit fields in a 32-bit entry.  
Table 28. NI 9217 Scan List Format  
Bits  
31:16  
15:8  
7:0  
Field  
Reserved  
Data Offest[t]  
Convert Code[t+1]  
Bits 15..8 describe the data offset to store a conversion at time t, and  
bits 7..0 describe the conversion control codes that take effect  
NI 9144 User Guide and Specifications  
36  
ni.com  
 
one conversion in the future, at time t+1. The conversion code is listed in  
Table 29.  
Table 29. NI 9217 Conversion Code  
Bits  
Field  
7:3  
Conversion rate: 0b11111 = 31,  
High-Accuracy  
0b00010 = 2, High-Speed  
2:1  
0
Channel number  
Reserved  
Note The conversion rate for every channel must match the value of the conversion speed  
control in 0x2002.  
For example, the scan list entry 0x00000001FC indicates this scan stores at  
address 1, and the next conversion is channel 2 at high-accuracy.  
Table 30 contains the default scan list.  
Table 30. NI 9217 Scan List Format  
Index  
Sub  
0
Type  
Value  
5
0x2001  
ARR:U32  
1
4
2
0x0000 | 0xF8 | 0x02  
0x0100 | 0xF8 | 0x04  
0x0200 | 0xF8 | 0x06  
0x0300 | 0xF8 | 0x00  
3
4
5
NI 9217 Calibration Data  
The NI 9217 has four RTD channels that can measure 100 Ω RTD in 3-wire  
and 4-wire mode. There is a 1 mA excitation current source per channel and  
the module range is –500 Ω to 500 Ω. The resistance range specified in the  
manual is 0 to 400 Ω. This range is tested and covers the temperature range  
of –200 ºC to 850 ºC for the standard platinum RTD. The channel does not  
read negative resistance.  
Each channel has an associated LSB weight, which is the number of  
Ω per bit, and an offset, which is the number of Ω per bit measured when  
the inputs are grounded.  
© National Instruments Corporation  
37  
NI 9144 User Guide and Specifications  
 
   
Note LSB weight is referred to as Gain in the object dictionary.  
The calibration data is stored in a U32 array, though each Offset field  
(subindex 1, 3, 5, and so on) should be interpreted as a signed value.  
Table 31. NI 9217 Calibration Coefficients  
Coefficient  
LSB Weight  
Offset  
Representation  
Unsigned  
Units  
pΩ/LSB  
μΩ  
Signed  
Use the calibration coefficients with the following equation to generate  
correct data:  
pΩ  
Ω
Ω
6  
1012  
Offset(μΩ) 10  
---------  
-------  
-------  
Rcorrected(Rraw) = Rraw(bits) LSB  
weight  
bits  
pΩ  
μΩ  
Rraw(bits) = data returned by the NI 9217 in bits  
Rcorrected = calibrated resistance reading  
NI 9219  
Table 32. NI 9219 Vendor Configuration Extensions  
Index  
Sub  
Type  
R/W  
Description  
Command List = 33  
0x2001  
0
1
ARR:U32  
R
Command Count = 1..32, default = 32  
Configuration Command  
Error Status  
2..33  
1
R/W  
R
0x2002  
0x2005  
ARR:U32  
U32  
0
R/W  
ADC Format  
NI 9144 User Guide and Specifications  
38  
ni.com  
 
 
Table 32. NI 9219 Vendor Configuration Extensions (Continued)  
Index  
Sub  
0
Type  
R/W  
R
Description  
Calibration = 168  
0x2100  
ARR:U32  
1
Ch0 60 V Offset  
Ch0 60 V Offset  
Ch0 15 V Offset  
2
R
3
R
...  
42  
43  
...  
0
...  
...  
R
Ch0 Full Bridge 7.8m V–V Gain  
R
Ch1 60 V Offset  
...  
...  
External Calibration = 168  
Ch0 60 V Offset  
...  
0x2101  
...  
ARR:U32  
Q
1
...  
R
...  
...  
NI 9219 ADC Format  
The NI 9219 converts at different rates, and can specify different data  
formatting styles. This is determined by both the ADC Format field and  
corresponding fields in the setup commands. The format of the ADC  
Format field is shown in Table 33.  
Table 33. NI 9219 ADC Format Field Format  
Bits  
31:24  
23:16  
15:8  
7:0  
Field  
Reserved  
Conversion speed in multiples of 10 mS  
Reserved  
AI Data Formatting  
Standard values for ADC Format are:  
0x0001000F, High-Speed  
0x000B000F, Best 60 Hz Rejection  
0x000D000F, Best 50 Hz Rejection  
0x0032000F, High-Resolution  
© National Instruments Corporation  
39  
NI 9144 User Guide and Specifications  
 
 
NI 9219 Error Status  
Caution Configuring all the channels in full-bridge mode shorts the channels and results  
in the firmware setting all the bits in the lower nibble.  
When a channel over-current condition occurs on any of the channels of the  
NI 9219 (such as, configure channels in 4-wire resistance mode and do not  
connect a resistor to the channel), the firmware sets a bit in the lower nibble  
indicating the presence of this condition (LSB = ch0).  
NI 9219 Calibration Data  
The NI 9219 has four channels which each have 21 different operating  
modes and ranges. Each channel has an associated LSB weight, which is  
the number of volts per bit, and an offset, which is the number of volts per  
bit measured when the inputs are grounded.  
Note LSB weight is referred to as Gain in the object dictionary.  
The operating modes and ranges, in the order they are defined in the  
calibration table for each channel, are:  
Table 34. NI 9219 Channel Calibration  
Entry  
Number  
Mode  
Range  
60 V  
1
2
Voltage  
Current  
15 V  
3
4 V  
4
1 V  
5
125 mV  
25 mA  
10 kΩ  
1 kΩ  
6
7
4-Wire Resistance  
8
9
2-Wire Resistance  
10 kΩ  
1 kΩ  
10  
11  
12  
13  
Thermocouple  
4-Wire RTD  
n/a  
Pt1000  
Pt100  
NI 9144 User Guide and Specifications  
40  
ni.com  
 
Table 34. NI 9219 Channel Calibration (Continued)  
Entry  
Number  
Mode  
3-Wire RTD  
Range  
14  
15  
16  
17  
18  
19  
20  
21  
Pt1000  
Pt100  
Quarter-Bridge  
350 Ω  
120 Ω  
Half-Bridge  
Reserved  
500 mV/V  
Full-Bridge  
62.5 mV/V  
7.8 mV/V  
The calibration data is stored in a U32 array, though each Offset field  
should be interpreted as a signed value.  
Table 35. NI 9219 Calibration Data  
Coefficient  
LSB Weight  
Offset  
Representation  
Unsigned  
Signed  
The NI 9219 returns calibrated 24-bit (padded to 32-bits) AI data for all  
modes and ranges.  
To convert raw data into engineering units use the following formula:  
y = m*x + b  
b = offset based on range of the device (such as, –60 for 60 Volts  
Voltage Measurement Range)  
m = Gain (Full-Range/ (224)): (such as, 120/(224) for 60 Volts Voltage  
Measurement Range)  
© National Instruments Corporation  
41  
NI 9144 User Guide and Specifications  
 
NI 9219 Configuration Commands  
There are eight configuration commands for the NI 9219.  
Eight configuration commands must be sent for each of the four channels.  
This is true even if you are only using a subset of the four channels. Each  
of the eight configuration commands is 1 Byte, each configuration  
command is followed by a data Byte, and then by a CRC value, which is  
1 Byte. Hence, 3 Bytes * 8 Commands * 4 channels = 96 command bytes  
(held in 32 entries in the object dictionary).  
Data in the object dictionary is held in LSB format, so the value  
0x12345678 is represented in memory as the series of bytes 0x78, 0x56,  
0x34, 0x12. The command word format is shown in Table 36.  
Table 36. NI 9219 Command Word Format  
Bits  
31:24  
23:16  
15:8  
7:0  
Field  
Reserved  
CRC  
Configuration Data  
Configuration Command  
NI 9219 CRC Calculation  
U8 crcShiftReg = 0;  
for ( x = 0 ; x < 8 ; ++x )  
{
dataBool = ((0x80>>x) & configCommand) != 0;  
shiftBool = (0x01 & crcShiftReg) != 0;  
crcShiftReg /= 2;  
if (dataBool != shiftBool)  
crcShiftReg ^= 0x8C;  
}
for ( x = 0 ; x < 8 ; ++x )  
{
dataBool = ((0x80>>x) & configData) != 0;  
shiftBool = (0x01 & crcShiftReg) != 0;  
crcShiftReg /= 2;  
if (dataBool != shiftBool)  
crcShiftReg ^= 0x8C;  
}
crcShiftReg = crcShiftReg << 1;  
return crcShiftReg;  
NI 9144 User Guide and Specifications  
42  
ni.com  
 
 
NI 9219 Configuration Command  
Whether you are using the channel or not, you must configure the  
Conversion Time, Mode, Range, and Calibration Gain/Offset values for  
each channel on the NI 9219.  
Note You must first send calibration gain and offset values in MSB format. The  
Conversion Time value must be the same across all channels.  
Table 37. NI 9219 Scan List Format  
Bits  
7:6  
5
Field  
Channel Number, 0..3  
= 0  
4:0  
Configuration Type  
Where:  
Table 38. NI 9219 Conversion Time Value  
Configuration Type Value  
Conversion Time  
0x1F  
0x01  
0x06  
0x05  
0x04  
0x0A  
0x09  
0x08  
Mode & Range  
Calibration Offset 2 (LSB)  
Calibration Offset 1  
Calibration Offset 0 (MSB)  
Calibration Gain 2 (LSB)  
Calibration Gain 1  
Calibration Gain 0 (MSB)  
© National Instruments Corporation  
43  
NI 9144 User Guide and Specifications  
 
NI 9219 Configuration Data  
Table 39. NI 9219 Type Conversion Time  
Configuration Value  
Max Frequency  
Conversion Time  
Description  
High Speed  
0x01  
0x08  
0x09  
0x0F  
100 Hz/50 Hz (TC)  
10 ms/20 ms (TC)  
9.09 Hz/8.33 Hz (TC) 110 ms/120 ms (TC)  
7.69 Hz/7.14 Hz (TC) 130 ms/140 ms (TC)  
Best 60 Hz Rejection  
Best 50 Hz Rejection  
High Resolution  
2 Hz/1.96 Hz (TC)  
500 ms/510 ms (TC)  
Note When any AI data channel is configured for Thermo-Couple, ADC conversion time  
increases by 10 ms for all channels. Refer to Max Frequency in Table 39 for various ACD  
timing configurations. The TC mode/range configuration code is 0x0A.  
Table 40. NI 9219 Mode and Range Type  
Configuration  
Value  
(0x00)  
(0x01)  
(0x02)  
(0x03)  
(0x04)  
(0x05)  
(0x06)  
(0x07)  
(0x08)  
(0x09)  
(0x0A)  
(0x0B)  
(0x0C)  
(0x0D)  
(0x0E)  
Mode  
Voltage  
Range  
60 V  
15 V  
3.75 V  
1 V  
.125 V  
25 mA  
10K 4w  
1K 4w  
10K 2w  
1K 2w  
TC  
Current  
Resistance  
TC  
RTD  
Pt1000 4w  
Pt100 4w  
Pt1000 3w  
Pt100 3w  
NI 9144 User Guide and Specifications  
44  
ni.com  
 
 
Table 40. NI 9219 Mode and Range Type (Continued)  
Configuration  
Value  
(0x0F)  
(0x10)  
(0x11)  
(0x13)  
(0x14)  
(0x17)  
Mode  
Range  
Quarter-Bridge  
350 Ω  
120 Ω  
Half-Bridge  
Full-Bridge  
1 V/V  
62.5 mV/V  
7.8 mV/V  
CJC range  
CJC  
NI 9219 Example Command Words Sequence  
Note The order in which you send the commands is important.  
Configuration 1: All Channels (ai0:ai3) for Voltage AI, 15 Volt Range,  
High Speed Mode (100 Hz Max Sample Rate):  
Table 41. NI 9219 Configuration 1: Command Bytes  
Command Byte Value  
Description  
ADC Mode Configuration Byte – Channel 0  
Data Byte  
0x01  
0x01  
0x46  
0x1F  
0x01  
0xC6  
0x04  
0x7F  
0x54  
0x05  
0xFF  
0xB6  
0x06  
0x85  
CRC value  
Mode/Range Configuration – Channel 0  
Data Byte  
CRC value  
Calibration Offset MSB – Channel 0  
Data Byte  
CRC value  
Calibration Offset Byte 2 – Channel 0  
Data Byte  
CRC value  
Calibration Offset LSB – Channel 0  
Data Byte  
© National Instruments Corporation  
45  
NI 9144 User Guide and Specifications  
 
Table 41. NI 9219 Configuration 1: Command Bytes (Continued)  
Command Byte Value Description  
0x56  
0x08  
0x6C  
0x1E  
0x09  
0xAA  
0x4E  
0x0A  
0xC1  
0x32  
0x41  
0x01  
0x64  
0x5F  
0x01  
0xE4  
0x44  
0x7F  
0x76  
0x45  
0xFF  
0x94  
0x46  
0x86  
0xE0  
0x48  
0x6C  
CRC value  
Calibration Gain MSB – Channel 0  
Data Byte  
CRC value  
Calibration Gain Byte 2 – Channel 0  
Data Byte  
CRC value  
Calibration Gain LSB – Channel 0  
Data Byte  
CRC value  
ADC Mode Configuration Byte – Channel 1  
Data Byte  
CRC value  
Mode/Range Configuration – Channel 1  
Data Byte  
CRC value  
Calibration Offset MSB – Channel 1  
Data Byte  
CRC value  
Calibration Offset Byte 2 – Channel 1  
Data Byte  
CRC value  
Calibration Offset LSB – Channel 1  
Data Byte  
CRC value  
Calibration Gain MSB – Channel 1  
Data Byte  
NI 9144 User Guide and Specifications  
46  
ni.com  
 
Table 41. NI 9219 Configuration 1: Command Bytes (Continued)  
Command Byte Value Description  
0x3C  
0x49  
0x76  
0x50  
0x4A  
0x3C  
0xF6  
0x81  
0x01  
0xCE  
0x9F  
0x01  
0x4E  
0x84  
0x7F  
0xDC  
0x85  
0xFF  
0x3E  
0x86  
0xC8  
0xC2  
0x88  
0x6C  
0x96  
0x89  
0xB0  
CRC value  
Calibration Gain Byte 2 – Channel 1  
Data Byte  
CRC value  
Calibration Gain LSB – Channel 1  
Data Byte  
CRC value  
ADC Mode Configuration Byte – Channel 2  
Data Byte  
CRC value  
Mode/Range Configuration – Channel 2  
Data Byte  
CRC value  
Calibration Offset MSB – Channel 2  
Data Byte  
CRC value  
Calibration Offset Byte 2 – Channel 2  
Data Byte  
CRC value  
Calibration Offset LSB – Channel 2  
Data Byte  
CRC value  
Calibration Gain MSB – Channel 2  
Data Byte  
CRC value  
Calibration Gain Byte 2 – Channel 2  
Data Byte  
© National Instruments Corporation  
47  
NI 9144 User Guide and Specifications  
 
Table 41. NI 9219 Configuration 1: Command Bytes (Continued)  
Command Byte Value Description  
0xF4  
0x8A  
0x90  
0x5E  
0xC1  
0x01  
0xEC  
0xDF  
0x01  
0x6C  
0xC4  
0x7F  
0xFE  
0xC5  
0xFF  
0x1C  
0xC6  
0xD3  
0xCA  
0xC8  
0x6C  
0xB4  
0xC9  
0xD8  
0x56  
0xCA  
CRC value  
Calibration Gain LSB – Channel 2  
Data Byte  
CRC value  
ADC Mode Configuration Byte – Channel 3  
Data Byte  
CRC value  
Mode/Range Configuration – Channel 3  
Data Byte  
CRC value  
Calibration Offset MSB – Channel 3  
Data Byte  
CRC value  
Calibration Offset Byte 2 – Channel 3  
Data Byte  
CRC value  
Calibration Offset LSB – Channel 3  
Data Byte  
CRC value  
Calibration Gain MSB – Channel 3  
Data Byte  
CRC value  
Calibration Gain Byte 2 – Channel 3  
Data Byte  
CRC value  
Calibration Gain LSB – Channel 3  
NI 9144 User Guide and Specifications  
48  
ni.com  
 
Table 41. NI 9219 Configuration 1: Command Bytes (Continued)  
Command Byte Value Description  
0x65  
Data Byte  
CRC value  
0xA0  
NI 9233  
As a DSA module, the NI 9233 does not synchronize to other modules and  
free-runs at its own fixed rate.  
Table 42. NI 9233 Vendor Configuration Extensions  
Index  
Sub  
Type  
R/W  
Description  
0x2002  
0
U32  
R/W  
Configure ADC,  
default = 0x0A  
0x2100  
0
1
ARR:U32  
R
R
R
...  
R
R
Calibration = 16  
Ch0 Offset  
Ch0 Gain  
Ch1 Offset  
...  
2
3
...  
8
Ch3 Gain  
9
External Ch0  
Offset  
...  
...  
...  
NI 9233 Configure ADC  
The NI 9233 (and NI 9229/9239) converts at various rates, controlled by  
the field in the ADC conversion command.  
Table 43. NI 9233 Scan List Format  
Bits  
7
Field  
Turbo Disable (NI 9233 only)  
Clock Divisor  
6:2  
1:0  
Clock Source = 2  
© National Instruments Corporation  
49  
NI 9144 User Guide and Specifications  
 
   
Where:  
Turbo Disable  
0
1
The conversion rate is equal to the  
oversample clock rate/128.  
Set to 0 for conversion rates > 25 kS/s.  
The conversion rate is equal to the  
oversample clock rate/256.  
Set to 1 for conversion rates < 25 kS/s.  
Clock Divisor  
The clock source (internal or external) is divided by this value and used  
as the converters’ oversample clock. Valid values are from 2 to 31, but  
the final divided clock must be between 512 kHz and 6.4 MHz. This  
means that only values from 2 to 25 are valid when using the 12.8 MHz  
internal clock source.  
Clock Source  
0b00 = 0  
0b01 = 1  
The OCLKpin is used as the  
oversample clock source.  
The 12.8 MHz internal clock is  
used as the clock source and this  
12.8 MHz is driven onto the OCLK  
pin.  
0b10 = 2  
The internal clock is used but not  
driven onto OCLKpin. Currently,  
this is the required clock setting.  
0b11 = 3  
Reserved.  
Table 44. NI 9233 Calibration Data  
Turbo  
Disable  
Clock  
Divisor  
Clock  
Source  
Configure  
ADC  
Oversample  
Clock Rate  
Data Rate  
50.000 kS/s  
25.000 kS/s  
12.500 kS/s  
0
1
1
00010  
00010  
00100  
10  
10  
10  
0x0A  
0x8A  
0x92  
6.40 MHz  
6.40 MHz  
3.20 MHz  
NI 9144 User Guide and Specifications  
50  
ni.com  
 
Table 44. NI 9233 Calibration Data (Continued)  
Turbo  
Disable  
Clock  
Divisor  
Clock  
Source  
Configure  
ADC  
Oversample  
Clock Rate  
Data Rate  
10.000 kS/s  
6.250 kS/s  
5.000 kS/s  
3.333 kS/s  
3.125 kS/s  
2.500 kS/s  
2.000 kS/s  
1
1
1
1
1
1
1
00101  
01000  
01010  
01111  
10000  
10100  
11001  
10  
10  
10  
10  
10  
10  
10  
0x96  
0xA2  
0xAA  
0xBE  
0xC2  
0xD2  
0xE6  
2.56 MHz  
1.60 MHz  
1.28 MHz  
853 kHz  
800 kHz  
640 kHz  
512 kHz  
NI 9233 Calibration Data  
The NI 9233 has four input channels with a fixed gain. The inputs are  
AC-coupled so calibration is done with a sine wave rather than with DC  
signals. The specification derivations are based on calibration at 250 Hz,  
acquired at 25 kS/s. The AC response (flatness) changes with both input  
frequency and sample rate; therefore, calibrating at different signal  
frequencies or at different sample rates gives different results.  
Each channel has an associated LSB weight, which is the number of volts  
per bit, and an offset.  
Note LSB weight is referred to as Gain in the object dictionary.  
The calibration data is stored in a U32 array, though each Offset field  
(subindex 1, 3, 5, and so on) should be interpreted as a signed value.  
Table 45. NI 9233 Scan List Format  
Coefficient  
LSB Weight  
Representation  
Units  
Default Value  
0x0009D292  
Unsigned  
pV/LSB  
(643.73 nV/bit)  
Offset  
Signed  
nV  
0x00000000  
(0 nV)  
Use the calibration coefficients with the following equation to generate  
corrected data:  
Calibrated_Data =Binary_Data × LSB_Weight Offset  
© National Instruments Corporation  
51  
NI 9144 User Guide and Specifications  
 
NI 9234  
Table 46. NI 9234 Vendor Configuration Extensions  
Index  
0x2002  
0x2100  
Sub  
0
Type  
U32  
R/W  
R/W  
R
Description  
Configure Module, default = 0x06  
0
ARR:U32  
Calibration = 16  
Ch0 Offset  
Ch0 Gain  
Ch0 Offset  
...  
1
2
R
3
R
...  
8
...  
R
Ch3 Gain  
External Ch0 Offset  
...  
9
R
...  
...  
As a DSA module, the NI 9234 does not synchronize to other modules and  
free-runs at its own fixed rate.  
NI 9234 Configure Module  
The NI 9234 has a variety of configuration fields available. Configuration  
bits 15:8 control the channel mode, while bits 7:0 set the conversion rate.  
Table 47. NI 9234 Scan List Format  
Bits  
15  
14  
13  
12  
11  
10  
9
Field  
Ch3 IEPE  
Ch3 AC/~DC  
Ch2 IEPE  
Ch2 AC/~DC  
Ch1 IEPE  
Ch1 AC/~DC  
Ch0 IEPE  
8
Ch0 AC/~DC  
Reserved  
7
NI 9144 User Guide and Specifications  
52  
ni.com  
 
 
Table 47. NI 9234 Scan List Format (Continued)  
Bits  
6:2  
1:0  
Field  
Clock Divisor  
Clock Source  
Where:  
IEPE Enable <3:0>  
When set, the corresponding channel’s relays are switched to IEPE operation. IEPE operations  
switches the AC/DC relay to AC mode and enables the IEPE relay to send the current to the IEPE  
sensor.  
AC/~DC <3:0>  
Controls the AC/DC relay when IEPE is not selected. If IEPE is enabled, then these bits have no  
meaning as AC mode is always selected with an IEPE operation.  
Clock Divisor  
The NI 9234 divides the clock source (internal or external) by this value and uses it as the  
converters’ oversample clock. The data rate is equal to 1/256 times this oversample clock frequency.  
Valid values for Clock Divisor are from 1 to 31, and the final divided clock must be between  
100 KHz and 12.8 MHz.  
Clock Source  
0b00 = 0  
0b01 = 1  
The OCLKpin is used as the oversample clock source.  
The 12.8 MHz internal clock is used as the clock source and this 12.8 MHz  
is driven onto the OCLKpin.  
0b10 = 2  
0b11 = 3  
The internal clock is used but not driven onto OCLKpin. Currently, this is  
the required clock setting.  
Reserved.  
© National Instruments Corporation  
53  
NI 9144 User Guide and Specifications  
 
NI 9234 Example Data Rates  
The example data rates use a 12.8 MHz clock source.  
Table 48. NI 9234 Example Data Rates  
Clock  
Divisor  
Clock  
Source  
Rate  
Byte  
Oversample  
Clock Rate  
Data Rate  
50.000 kS/s  
25.000 kS/s  
16.667 kS/s  
12.500 kS/s  
10.000 kS/s  
6.250 kS/s  
5.000 kS/s  
00001  
00010  
00011  
00100  
00101  
01000  
01010  
10  
10  
10  
10  
10  
10  
10  
0x06  
0x0A  
0x0E  
0x12  
0x16  
0x22  
0x2A  
12.80 MHz  
6.40 MHz  
4.27 MHz  
3.20 MHz  
2.56 MHz  
1.60 MHz  
1.28 MHz  
NI 9234 Calibration Data  
The NI 9234 has four channels with a nominal range of 5 V. Each channel  
has an associated AC or DC input mode; an optional IEPE excitation; an  
associated LSB weight, which is how many volts there are per bit; and an  
offset, which is the volts per bit measured with the inputs grounded.  
Note LSB weight is referred to as Gain in the object dictionary.  
The calibration data is stored in a U32 array, though each Offset field  
(subindex 1, 3, 5, and so on) should be interpreted as a signed value.  
Table 49. NI 9234 Scan List Format  
Coefficient  
LSB Weight  
Offset  
Representation  
Unsigned  
Units  
pV/LSB  
nV  
Signed  
Use the calibration coefficients with the following equation to generate  
corrected data:  
pV  
bits  
V
pV  
V
nV  
9  
1012  
Offset(pV) 10  
---------  
------  
------  
Vcorrected(Vraw) = Vraw(bits) LSB  
weight  
NI 9144 User Guide and Specifications  
54  
ni.com  
 
NI 9237  
Table 50. NI 9237 Vendor Configuration Extensions  
Index  
Sub  
Type  
R/W  
Description  
0x2002  
0
U32  
R/W  
Configure  
Module,  
default =  
0x00060000  
0x2100  
0
1
ARR:U16  
Calibration = 16  
Ch0 Offset  
Ch0 Gain  
Ch1 Offset  
...  
R
R
R
...  
R
R
2
3
...  
8
Ch3 Gain  
9
External Ch0  
Offset  
...  
...  
...  
As a DSA module, the NI 9237 does not synchronize to other modules and  
free-runs at its own fixed rate.  
NI 9237 Configure Module  
This module is set to maximum speed and configured for Full Bridge Mode  
for all channels by default.  
Table 51. NI 9237 Scan List Format  
Bits  
31:23  
22:18  
17:16  
15:12  
11:8  
7
Field  
Reserved  
Clock Divisor  
Clock Source  
Shunt Cal Enable <ch3..ch0>  
Half Bridge Enable <ch3..ch0>  
Reserved  
© National Instruments Corporation  
55  
NI 9144 User Guide and Specifications  
 
 
Table 51. NI 9237 Scan List Format (Continued)  
Bits  
6:4  
3:0  
Field  
Excitation  
Offset Cal Enable <ch3..ch0>  
Where:  
Shunt Cal Enable <3..0>  
Controls the shunt calibration switch for each of the four channels. A logic 1 in any bit closes the  
switch for the respective channel, while a logic 0 opens the switch.  
Half Bridge Enable <3..0>  
Controls the half bridge completion option for each channel. Enabling half bridge completion for a  
channel disconnects the negative signal input pin from the rest of the circuit, and uses an internal  
voltage equal to the midpoint of the excitation voltage as the negative input to the rest of the circuit.  
A logic 1 in any bit enables half bridge completion for the respective channel, while a logic 0  
disables it.  
Excitation  
Sets the excitation voltage setting. All channels share the same excitation voltage.  
0b000 = 0  
2.5 V  
The OCLKpin is used as the  
oversample clock source.  
0b001 = 1  
3.3 V  
The 12.8 MHz internal clock is  
used as the clock source and  
this 12.8 MHz is driven onto  
the OCLKpin.  
0b010 = 2  
5.0 V  
The internal clock is used but  
not driven onto OCLKpin.  
Currently, this is the required  
clock setting.  
0b011 = 3  
10.0 V  
Reserved.  
0b1xx = 4..7  
External Excitation  
NI 9144 User Guide and Specifications  
56  
ni.com  
 
Offset Cal Enable <3..0>  
Controls the offset calibration mode. Offset calibration mode disconnects both signal input pins and  
forces the channel inputs to zero volts, enabling measurement of the channel’s offset voltage. A  
logic 1 in any bit enables offset calibration for the respective channel, while a logic 0 disables it.  
Clock Divisor  
The NI 9237 divides the clock source (internal or external) by this value and uses it as the  
converters’ oversample clock. The data rate is equal to 1/256 times this oversample clock frequency.  
The final data rate must be between 391 kS/s and 52.734 kS/s. This means that while all values from  
1 to 31 are within the specified operating range when using the 12.8 MHz internal clock source, for  
external clock sources of more than 13.5 MHz or less than 3.1 MHz the valid divisors are limited to  
those that provide data rates within the specified range.  
NI 9237 Example Data Rates  
Example data rates use a 12.8 MHz clock source.  
Table 52. NI 9237 Example Data Rates  
Oversample  
Data Rate  
50.000 kS/s  
25.000 kS/s  
16.667 kS/s  
12.500 kS/s  
10.000 kS/s  
6.250 kS/s  
5.000 kS/s  
3.333 kS/s  
2.500 kS/s  
2.000 kS/s  
Clock Divisor  
00001  
Clock Source  
Rate Byte  
0x06  
Clock Rate  
12.80 MHz  
6.40 MHz  
4.27 MHz  
3.20 MHz  
2.56 MHz  
1.60 MHz  
1.28 MHz  
853.3 KHz  
640.0 KHz  
512.0 KHz  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
00010  
0x0A  
0x0E  
0x12  
00011  
00100  
00101  
0x16  
01000  
0x22  
01010  
0x2A  
0x3E  
0x52  
01111  
10100  
11001  
0x66  
© National Instruments Corporation  
57  
NI 9144 User Guide and Specifications  
 
NI 9237 Calibration Data  
The NI 9237 has four channels. Each channel has an associated LSB  
weight, which is the number of volts per bit, and an offset, which is the  
number of volts per bit measured when the inputs are grounded.  
Note LSB weight is referred to as Gain in the object dictionary.  
The calibration data is stored in a U16 array, though each Offset field  
(subindex 1, 3, 5, and so on) should be interpreted as a signed value.  
Table 53. NI 9237 Scan List Format  
Coefficient  
LSB Weight  
Offset  
Representation  
Unsigned  
Units  
pV/LSB  
nV  
Signed  
Use the calibration coefficients with the following equation to generate  
corrected data:  
pV  
bits  
V
pV  
V
nV  
8  
1013  
Offset(pV) 10  
---------  
------  
------  
Vcorrected(Vraw) = Vraw(bits) LSB  
weight  
NI 9229/9239  
Table 54. NI 9229/9239 Vendor Configuration Extensions  
Index  
Sub  
Type  
R/W  
Description  
0x2002  
0
U32  
R/W  
Configure ADC,  
default = 0x06  
0x2100  
0
1
ARR:U32  
Calibration = 16  
Ch0 Offset  
Ch0 Gain  
R
R
R
...  
R
R
2
3
Ch1 Offset  
...  
8
Ch3 Gain  
9
External Ch0  
Offset  
...  
...  
NI 9144 User Guide and Specifications  
58  
ni.com  
 
 
As a DSA module, the NI 9229/9239 does not synchronize to other  
modules and free-runs at its own fixed rate.  
For more information, refer to the NI 9233 Configure ADC section of this  
document.  
Note The NI 9229/9239 does not have the Turbo Bit configuration byte.  
NI 9229/9239 Calibration Data  
The NI 9229/9239 have four channels with nominal ranges of 10 V and  
60 V respectively. Each channel has an associated LSB weight, which is  
the number of volts per bit, and an offset, which is the number of volts per  
bit measured when the inputs are grounded.  
Note LSB weight is referred to as Gain in the object dictionary.  
The calibration data is stored in a U32 array, though each Offset field  
(subindex 1, 3, 5, and so on) should be interpreted as a signed value.  
Table 55. NI 9229/9239 Scan List Format  
Coefficient  
LSB Weight  
Offset  
Representation  
Unsigned  
Units  
pV/LSB  
nV  
Signed  
Use the calibration coefficients with the following equation to generate  
corrected data:  
pV  
bits  
V
pV  
V
nV  
9  
1012  
Offset(pV) 10  
---------  
------  
------  
Vcorrected(Vraw) = Vraw(bits) LSB  
weight  
© National Instruments Corporation  
59  
NI 9144 User Guide and Specifications  
 
NI 9263  
Table 56. NI 9263 Vendor Configuration Extensions  
Index  
Sub  
0
Type  
R/W  
R
Description  
Calibration = 16  
Ch0 Offset  
0x2100  
ARR:U32  
1
2
R
Ch0 Gain  
3
R
Ch1 Offset  
...  
8
...  
R
Ch3 Gain  
9
R
External Ch0  
Offset  
...  
...  
NI 9263 Calibration Data  
The NI 9263 has four channels with a nominal range of 10.7 V. Each  
channel has an associated LSB weight, which is the number of volts per bit,  
and an offset, which is the number of volts per bit measured when the inputs  
are grounded.  
Note LSB weight is referred to as Gain in the object dictionary.  
The calibration data is stored in a U32 array, though each Offset field  
(subindex 1, 3, 5, and so on) should be interpreted as a signed value.  
Table 57. NI 9263 Scan List Format  
Coefficient  
LSB Weight  
Offset  
Representation  
Unsigned  
Units  
nV/LSB  
nV  
Signed  
Use the calibration coefficients with the following equation to generate  
corrected data:  
nV  
bits  
V
nV  
V
nV  
9  
9  
---------  
------  
------  
Vdesired(Code) = Code LSBweight  
10  
+ Offset(nV) • 10  
NI 9144 User Guide and Specifications  
60  
ni.com  
 
 
NI 9264  
Table 58. NI 9264 Vendor Configuration Extensions  
Index  
Sub  
1
Type  
R/W  
R
Description  
Calibration = 16  
Ch0 Gain  
Ch1 Offset  
...  
0x2100  
ARR:U32  
2
3
R
...  
8
...  
R
Ch3 Gain  
9
R
External Ch0  
Offset  
...  
...  
...  
NI 9264 Calibration Data  
The NI 9263 has four channels with a nominal range of 10.5 V. Each  
channel has an associated LSB weight, which is the number of volts per bit,  
and an offset, which is the number of volts per bit measured when the inputs  
are grounded.  
Note LSB weight is referred to as Gain in the object dictionary.  
The calibration data is stored in a U32 array, though each Offset field  
(subindex 1, 3, 5, and so on) should be interpreted as a signed value.  
Table 59. NI 9264 Scan List Format  
Coefficient  
LSB Weight  
Offset  
Representation  
Unsigned  
Units  
pV/LSB  
nV  
Signed  
Use the calibration coefficients with the following equation to generate  
corrected data:  
nV  
bits  
V
nV  
V
nV  
9  
9  
---------  
------  
------  
Vdesired(Code) = Code LSBweight  
10  
+ Offset(nV) • 10  
© National Instruments Corporation  
61  
NI 9144 User Guide and Specifications  
 
 
NI 9265  
Table 60. NI 9265 Vendor Configuration Extensions  
Index  
Sub  
Type  
R/W  
Description  
0x2002  
1
ARR:U32  
R
Error Status,  
sent as 8-bit PDO  
0x2100  
0
1
ARR:U32  
R
Calibration = 16  
Ch0 Offset  
Ch0 Gain  
2
R
3
R
Ch1 Offset  
...  
8
R
Ch3 Gain  
9
R
External Ch0  
Offset  
...  
NI 9265 Error Status  
Each channel has open loop detection circuitry that reports an error  
whenever the load is disconnected and the current is set to a value higher  
than 0 mA.  
NI 9265 Calibration Data  
The NI 9265 has four channels with a nominal range of 0 to 20.675 mA.  
Each channel has an associated LSB weight, which is the number of volts  
per bit, and an offset, which is the number of volts per bit measured when  
the inputs are grounded.  
Note LSB weight is referred to as Gain in the object dictionary.  
The calibration data is stored in a U32 array, though each Offset field  
(subindex 1, 3, 5, and so on) should be interpreted as a signed value.  
Table 61. NI 9265 Scan List Format  
Coefficient  
LSB Weight  
Offset  
Representation  
Unsigned  
Units  
pA/LSB  
pA  
Signed  
NI 9144 User Guide and Specifications  
62  
ni.com  
 
 
Use the calibration coefficients with the following equation to generate  
corrected data:  
pA  
bits  
A
pA  
A
pA  
12  
12  
---------  
------  
------  
Idesired(Code) = Code LSBweight  
10  
+ Offset(pA) • 10  
NI 9401  
Table 62. NI 9401 Vendor Configuration Extensions  
Index  
Sub  
Type  
R/W  
Description  
0x2001  
0
U32  
R/W  
Nibble direction  
control,  
default = 0  
NI 9401 Direction Control  
Table 63. NI 9401 Scan List Format  
Field  
Bits  
1
0: data bits 3:0 as input  
1: data bits 7:4 as output  
0: data bits 3:0 as input  
1: data bits 7:4 as output  
0
Note Both the input and output bytes are transmitted in the PDO regardless of the  
direction control; only the relevant bits are connected to the I/O pins.  
NI 9403  
Table 64. NI 9403 Vendor Configuration Extension  
Index  
Sub  
Type  
R/W  
Description  
0x2001  
0
U32  
R/W  
I/O direction  
control,  
default = 0  
© National Instruments Corporation  
63  
NI 9144 User Guide and Specifications  
 
   
NI 9403 Direction Control  
The direction control field has one bit for each I/O pin, with bit 0 matching  
channel 0, and so forth. 0 in the direction control indicates that I/O is an  
input; 1 indicates an output.  
Note Both the input and output data is transmitted in the PDO regardless of the direction  
control; only the relevant bits are connected to the I/O pins.  
NI 9476  
Table 65. NI 9476 Vendor Configuration Extensions  
Index  
Sub  
Type  
R/W  
Description  
0x2002  
0
U32  
R
Error Status,  
sent as 8-bit PDO  
0x2003  
0
U32  
W
Error  
Acknowledge  
NI 9476 Error Status  
If a channel over-current occurs on any of the 32 channels, the  
corresponding bit in error status field is set to inform the user.  
NI 9144 User Guide and Specifications  
64  
ni.com  
 
 
Where to Go for Support  
The National Instruments Web site is your complete resource for technical  
support. At ni.com/supportyou have access to everything from  
troubleshooting and application development self-help resources to email  
and phone assistance from NI Application Engineers.  
National Instruments corporate headquarters is located at  
11500 North Mopac Expressway, Austin, Texas, 78759-3504.  
National Instruments also has offices located around the world to help  
address your support needs. For telephone support in the United States,  
create your service request at ni.com/supportand follow the calling  
instructions or dial 512 795 8248. For telephone support outside the United  
States, contact your local branch office:  
Australia 1800 300 800, Austria 43 662 457990-0,  
Belgium 32 (0) 2 757 0020, Brazil 55 11 3262 3599,  
Canada 800 433 3488, China 86 21 5050 9800,  
Czech Republic 420 224 235 774, Denmark 45 45 76 26 00,  
Finland 358 (0) 9 725 72511, France 01 57 66 24 24,  
Germany 49 89 7413130, India 91 80 41190000, Israel 972 3 6393737,  
Italy 39 02 41309277, Japan 0120-527196, Korea 82 02 3451 3400,  
Lebanon 961 (0) 1 33 28 28, Malaysia 1800 887710,  
Mexico 01 800 010 0793, Netherlands 31 (0) 348 433 466,  
New Zealand 0800 553 322, Norway 47 (0) 66 90 76 60,  
Poland 48 22 328 90 10, Portugal 351 210 311 210,  
Russia 7 495 783 6851, Singapore 1800 226 5886,  
Slovenia 386 3 425 42 00, South Africa 27 0 11 805 8197,  
Spain 34 91 640 0085, Sweden 46 (0) 8 587 895 00,  
Switzerland 41 56 2005151, Taiwan 886 02 2377 2222,  
Thailand 662 278 6777, Turkey 90 212 279 3031,  
United Kingdom 44 (0) 1635 523545  
National Instruments, NI, ni.com, and LabVIEW are trademarks of National Instruments Corporation.  
Refer to the Terms of Use section on ni.com/legalfor more information about National  
Instruments trademarks. Other product and company names mentioned herein are trademarks or trade  
names of their respective companies. For patents covering National Instruments products/technology,  
refer to the appropriate location: Help»Patents in your software, the patents.txtfile on your  
media, or the National Instruments Patent Notice at ni.com/patents.  
© 2008 National Instruments Corporation. All rights reserved.  
372498A-01  
Oct08  
 
 

Miller Electric Welder S 75S User Manual
Nady Systems Music Mixer MM 15USB User Manual
NEC DVD Recorder NDRV 62 User Manual
NETGEAR Musical Toy Instrument WAG302 User Manual
Nextar MP3 Player MA715 User Manual
Nortel Networks Network Card NN44200 300 User Manual
Onkyo DVR DR S20 User Manual
Packard Bell Laptop LJ61 User Manual
Panasonic Camera Lens H X015 User Manual
Panasonic CD Player CQ DPG550 User Manual